Overview

Brought to you by YData

Dataset statistics

Number of variables13
Number of observations119
Missing cells0
Missing cells (%)0.0%
Duplicate rows17
Duplicate rows (%)14.3%
Total size in memory113.1 KiB
Average record size in memory973.6 B

Variable types

Numeric11
Text2

Alerts

Dataset has 17 (14.3%) duplicate rowsDuplicates
Follows is highly overall correlated with From Hashtags and 4 other fieldsHigh correlation
From Explore is highly overall correlated with Impressions and 2 other fieldsHigh correlation
From Hashtags is highly overall correlated with Follows and 3 other fieldsHigh correlation
From Home is highly overall correlated with Impressions and 3 other fieldsHigh correlation
From Other is highly overall correlated with Follows and 1 other fieldsHigh correlation
Impressions is highly overall correlated with Follows and 6 other fieldsHigh correlation
Likes is highly overall correlated with Follows and 6 other fieldsHigh correlation
Profile Visits is highly overall correlated with Follows and 3 other fieldsHigh correlation
Saves is highly overall correlated with From Explore and 4 other fieldsHigh correlation
Shares is highly overall correlated with From Home and 2 other fieldsHigh correlation
Comments has 3 (2.5%) zeros Zeros
Shares has 5 (4.2%) zeros Zeros
Follows has 9 (7.6%) zeros Zeros

Reproduction

Analysis started2025-09-15 13:58:20.959084
Analysis finished2025-09-15 13:58:37.365022
Duration16.41 seconds
Software versionydata-profiling vv4.16.1
Download configurationconfig.json

Variables

Impressions
Real number (ℝ)

High correlation 

Distinct101
Distinct (%)84.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean5703.9916
Minimum1941
Maximum36919
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:37.479719image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum1941
5-th percentile2407
Q13467
median4289
Q36138
95-th percentile11404.1
Maximum36919
Range34978
Interquartile range (IQR)2671

Descriptive statistics

Standard deviation4843.7801
Coefficient of variation (CV)0.84919131
Kurtosis21.918792
Mean5703.9916
Median Absolute Deviation (MAD)1120
Skewness4.1819648
Sum678775
Variance23462206
MonotonicityNot monotonic
2025-09-15T13:58:37.645846image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
5394 3
 
2.5%
2407 2
 
1.7%
5055 2
 
1.7%
6168 2
 
1.7%
3169 2
 
1.7%
4082 2
 
1.7%
3924 2
 
1.7%
3015 2
 
1.7%
4628 2
 
1.7%
4002 2
 
1.7%
Other values (91) 98
82.4%
ValueCountFrequency (%)
1941 1
0.8%
2064 1
0.8%
2191 1
0.8%
2218 1
0.8%
2327 1
0.8%
2407 2
1.7%
2518 1
0.8%
2523 1
0.8%
2621 1
0.8%
2766 2
1.7%
ValueCountFrequency (%)
36919 1
0.8%
32695 1
0.8%
17713 1
0.8%
17396 1
0.8%
16062 1
0.8%
13700 1
0.8%
11149 1
0.8%
11068 1
0.8%
10933 1
0.8%
10667 1
0.8%

From Home
Real number (ℝ)

High correlation 

Distinct97
Distinct (%)81.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2475.7899
Minimum1133
Maximum13473
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:37.790615image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum1133
5-th percentile1338
Q11945
median2207
Q32602.5
95-th percentile3845.4
Maximum13473
Range12340
Interquartile range (IQR)657.5

Descriptive statistics

Standard deviation1489.3863
Coefficient of variation (CV)0.60158026
Kurtosis37.42173
Mean2475.7899
Median Absolute Deviation (MAD)334
Skewness5.6448226
Sum294619
Variance2218271.7
MonotonicityNot monotonic
2025-09-15T13:58:37.943507image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
1975 3
 
2.5%
2415 2
 
1.7%
3401 2
 
1.7%
2608 2
 
1.7%
2017 2
 
1.7%
2275 2
 
1.7%
2541 2
 
1.7%
2034 2
 
1.7%
2406 2
 
1.7%
2177 2
 
1.7%
Other values (87) 98
82.4%
ValueCountFrequency (%)
1133 1
0.8%
1179 1
0.8%
1304 1
0.8%
1308 1
0.8%
1323 1
0.8%
1338 2
1.7%
1466 1
0.8%
1502 1
0.8%
1543 1
0.8%
1570 1
0.8%
ValueCountFrequency (%)
13473 1
0.8%
11815 1
0.8%
5185 1
0.8%
4439 1
0.8%
4137 2
1.7%
3813 1
0.8%
3717 1
0.8%
3401 2
1.7%
3152 2
1.7%
3144 1
0.8%

From Hashtags
Real number (ℝ)

High correlation 

Distinct100
Distinct (%)84.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1887.5126
Minimum116
Maximum11817
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:38.085335image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum116
5-th percentile201
Q1726
median1278
Q32363.5
95-th percentile5129.4
Maximum11817
Range11701
Interquartile range (IQR)1637.5

Descriptive statistics

Standard deviation1884.3614
Coefficient of variation (CV)0.99833052
Kurtosis8.9271402
Mean1887.5126
Median Absolute Deviation (MAD)695
Skewness2.5753493
Sum224614
Variance3550818
MonotonicityNot monotonic
2025-09-15T13:58:38.230478image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
655 2
 
1.7%
3450 2
 
1.7%
707 2
 
1.7%
411 2
 
1.7%
1278 2
 
1.7%
771 2
 
1.7%
116 2
 
1.7%
2975 2
 
1.7%
278 2
 
1.7%
2351 2
 
1.7%
Other values (90) 99
83.2%
ValueCountFrequency (%)
116 2
1.7%
139 1
0.8%
166 1
0.8%
183 1
0.8%
201 2
1.7%
212 1
0.8%
255 1
0.8%
278 2
1.7%
349 1
0.8%
362 2
1.7%
ValueCountFrequency (%)
11817 1
0.8%
10008 1
0.8%
7761 1
0.8%
6610 1
0.8%
6564 1
0.8%
5799 1
0.8%
5055 1
0.8%
4604 1
0.8%
4221 1
0.8%
4176 1
0.8%

From Explore
Real number (ℝ)

High correlation 

Distinct95
Distinct (%)79.8%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1078.1008
Minimum0
Maximum17414
Zeros1
Zeros (%)0.8%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:38.371813image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile45
Q1157.5
median326
Q3689.5
95-th percentile5380.2
Maximum17414
Range17414
Interquartile range (IQR)532

Descriptive statistics

Standard deviation2613.0261
Coefficient of variation (CV)2.4237307
Kurtosis24.753334
Mean1078.1008
Median Absolute Deviation (MAD)219
Skewness4.7608149
Sum128294
Variance6827905.6
MonotonicityNot monotonic
2025-09-15T13:58:38.524534image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
45 3
 
2.5%
84 3
 
2.5%
861 2
 
1.7%
541 2
 
1.7%
115 2
 
1.7%
326 2
 
1.7%
248 2
 
1.7%
153 2
 
1.7%
121 2
 
1.7%
298 2
 
1.7%
Other values (85) 97
81.5%
ValueCountFrequency (%)
0 1
 
0.8%
29 1
 
0.8%
36 1
 
0.8%
37 1
 
0.8%
45 3
2.5%
48 2
1.7%
51 2
1.7%
59 1
 
0.8%
60 1
 
0.8%
69 1
 
0.8%
ValueCountFrequency (%)
17414 1
0.8%
16444 1
0.8%
12389 1
0.8%
6000 1
0.8%
5762 1
0.8%
5634 1
0.8%
5352 1
0.8%
5192 1
0.8%
2355 2
1.7%
2266 1
0.8%

From Other
Real number (ℝ)

High correlation 

Distinct84
Distinct (%)70.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean171.09244
Minimum9
Maximum2547
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:38.697846image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum9
5-th percentile20.7
Q138
median74
Q3196
95-th percentile570.4
Maximum2547
Range2538
Interquartile range (IQR)158

Descriptive statistics

Standard deviation289.43103
Coefficient of variation (CV)1.6916647
Kurtosis39.146608
Mean171.09244
Median Absolute Deviation (MAD)42
Skewness5.3874322
Sum20360
Variance83770.322
MonotonicityNot monotonic
2025-09-15T13:58:38.851451image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
34 4
 
3.4%
73 3
 
2.5%
36 3
 
2.5%
32 3
 
2.5%
26 3
 
2.5%
65 3
 
2.5%
72 3
 
2.5%
139 3
 
2.5%
18 2
 
1.7%
39 2
 
1.7%
Other values (74) 90
75.6%
ValueCountFrequency (%)
9 2
1.7%
15 1
 
0.8%
17 1
 
0.8%
18 2
1.7%
21 1
 
0.8%
23 1
 
0.8%
24 1
 
0.8%
25 2
1.7%
26 3
2.5%
27 2
1.7%
ValueCountFrequency (%)
2547 1
0.8%
1115 1
0.8%
794 1
0.8%
792 1
0.8%
748 1
0.8%
655 1
0.8%
561 1
0.8%
536 1
0.8%
533 1
0.8%
532 1
0.8%

Saves
Real number (ℝ)

High correlation 

Distinct84
Distinct (%)70.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean153.31092
Minimum22
Maximum1095
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:38.998972image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum22
5-th percentile35.9
Q165
median109
Q3169
95-th percentile472.5
Maximum1095
Range1073
Interquartile range (IQR)104

Descriptive statistics

Standard deviation156.31773
Coefficient of variation (CV)1.0196125
Kurtosis12.786458
Mean153.31092
Median Absolute Deviation (MAD)48
Skewness3.1341324
Sum18244
Variance24435.233
MonotonicityNot monotonic
2025-09-15T13:58:39.156604image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
40 4
 
3.4%
135 4
 
3.4%
144 4
 
3.4%
111 3
 
2.5%
42 3
 
2.5%
106 2
 
1.7%
49 2
 
1.7%
74 2
 
1.7%
101 2
 
1.7%
82 2
 
1.7%
Other values (74) 91
76.5%
ValueCountFrequency (%)
22 1
 
0.8%
28 1
 
0.8%
33 1
 
0.8%
34 2
1.7%
35 1
 
0.8%
36 1
 
0.8%
38 2
1.7%
40 4
3.4%
41 1
 
0.8%
42 3
2.5%
ValueCountFrequency (%)
1095 1
0.8%
668 2
1.7%
653 1
0.8%
573 1
0.8%
504 1
0.8%
469 1
0.8%
421 1
0.8%
393 1
0.8%
342 1
0.8%
318 1
0.8%

Comments
Real number (ℝ)

Zeros 

Distinct15
Distinct (%)12.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean6.6638655
Minimum0
Maximum19
Zeros3
Zeros (%)2.5%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:39.272657image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1.9
Q14
median6
Q38
95-th percentile11.2
Maximum19
Range19
Interquartile range (IQR)4

Descriptive statistics

Standard deviation3.5445765
Coefficient of variation (CV)0.53190996
Kurtosis2.0099397
Mean6.6638655
Median Absolute Deviation (MAD)2
Skewness0.94325674
Sum793
Variance12.564022
MonotonicityNot monotonic
2025-09-15T13:58:39.392083image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=15)
ValueCountFrequency (%)
6 17
14.3%
8 16
13.4%
4 14
11.8%
7 13
10.9%
5 12
10.1%
11 9
7.6%
9 8
6.7%
3 8
6.7%
10 5
 
4.2%
2 5
 
4.2%
Other values (5) 12
10.1%
ValueCountFrequency (%)
0 3
 
2.5%
1 3
 
2.5%
2 5
 
4.2%
3 8
6.7%
4 14
11.8%
5 12
10.1%
6 17
14.3%
7 13
10.9%
8 16
13.4%
9 8
6.7%
ValueCountFrequency (%)
19 2
 
1.7%
17 2
 
1.7%
13 2
 
1.7%
11 9
7.6%
10 5
 
4.2%
9 8
6.7%
8 16
13.4%
7 13
10.9%
6 17
14.3%
5 12
10.1%

Shares
Real number (ℝ)

High correlation  Zeros 

Distinct28
Distinct (%)23.5%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean9.3613445
Minimum0
Maximum75
Zeros5
Zeros (%)4.2%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:39.505236image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q13
median6
Q313.5
95-th percentile23.3
Maximum75
Range75
Interquartile range (IQR)10.5

Descriptive statistics

Standard deviation10.089205
Coefficient of variation (CV)1.0777517
Kurtosis15.613397
Mean9.3613445
Median Absolute Deviation (MAD)4
Skewness3.1553217
Sum1114
Variance101.79205
MonotonicityNot monotonic
2025-09-15T13:58:39.652079image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=28)
ValueCountFrequency (%)
3 14
 
11.8%
1 12
 
10.1%
4 9
 
7.6%
5 8
 
6.7%
6 8
 
6.7%
15 7
 
5.9%
7 5
 
4.2%
14 5
 
4.2%
11 5
 
4.2%
2 5
 
4.2%
Other values (18) 41
34.5%
ValueCountFrequency (%)
0 5
 
4.2%
1 12
10.1%
2 5
 
4.2%
3 14
11.8%
4 9
7.6%
5 8
6.7%
6 8
6.7%
7 5
 
4.2%
8 5
 
4.2%
9 3
 
2.5%
ValueCountFrequency (%)
75 1
 
0.8%
41 2
1.7%
38 1
 
0.8%
27 1
 
0.8%
26 1
 
0.8%
23 1
 
0.8%
22 2
1.7%
20 3
2.5%
19 1
 
0.8%
18 2
1.7%

Likes
Real number (ℝ)

High correlation 

Distinct85
Distinct (%)71.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean173.78151
Minimum72
Maximum549
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:39.819985image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum72
5-th percentile81.9
Q1121.5
median151
Q3204
95-th percentile328
Maximum549
Range477
Interquartile range (IQR)82.5

Descriptive statistics

Standard deviation82.378947
Coefficient of variation (CV)0.47403746
Kurtosis4.2120269
Mean173.78151
Median Absolute Deviation (MAD)37
Skewness1.7533936
Sum20680
Variance6786.2908
MonotonicityNot monotonic
2025-09-15T13:58:39.995159image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
151 5
 
4.2%
114 5
 
4.2%
159 3
 
2.5%
92 3
 
2.5%
72 3
 
2.5%
129 2
 
1.7%
121 2
 
1.7%
205 2
 
1.7%
76 2
 
1.7%
160 2
 
1.7%
Other values (75) 90
75.6%
ValueCountFrequency (%)
72 3
2.5%
76 2
1.7%
81 1
 
0.8%
82 1
 
0.8%
85 1
 
0.8%
86 2
1.7%
91 1
 
0.8%
92 3
2.5%
94 1
 
0.8%
95 1
 
0.8%
ValueCountFrequency (%)
549 1
0.8%
443 1
0.8%
416 2
1.7%
373 1
0.8%
328 2
1.7%
308 1
0.8%
301 1
0.8%
297 1
0.8%
294 1
0.8%
275 1
0.8%

Profile Visits
Real number (ℝ)

High correlation 

Distinct59
Distinct (%)49.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean50.621849
Minimum4
Maximum611
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:40.140651image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum4
5-th percentile8.9
Q115
median23
Q342
95-th percentile186.6
Maximum611
Range607
Interquartile range (IQR)27

Descriptive statistics

Standard deviation87.088402
Coefficient of variation (CV)1.7203718
Kurtosis19.961194
Mean50.621849
Median Absolute Deviation (MAD)11
Skewness4.1930725
Sum6024
Variance7584.3897
MonotonicityNot monotonic
2025-09-15T13:58:40.301865image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
21 6
 
5.0%
19 6
 
5.0%
26 5
 
4.2%
14 5
 
4.2%
20 4
 
3.4%
11 4
 
3.4%
16 4
 
3.4%
8 4
 
3.4%
10 4
 
3.4%
9 4
 
3.4%
Other values (49) 73
61.3%
ValueCountFrequency (%)
4 1
 
0.8%
7 1
 
0.8%
8 4
3.4%
9 4
3.4%
10 4
3.4%
11 4
3.4%
12 3
2.5%
13 2
 
1.7%
14 5
4.2%
15 3
2.5%
ValueCountFrequency (%)
611 1
0.8%
467 1
0.8%
347 1
0.8%
330 1
0.8%
306 1
0.8%
237 1
0.8%
181 1
0.8%
155 1
0.8%
148 1
0.8%
144 1
0.8%

Follows
Real number (ℝ)

High correlation  Zeros 

Distinct29
Distinct (%)24.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean20.756303
Minimum0
Maximum260
Zeros9
Zeros (%)7.6%
Negative0
Negative (%)0.0%
Memory size1.1 KiB
2025-09-15T13:58:40.819787image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q14
median8
Q318
95-th percentile94.2
Maximum260
Range260
Interquartile range (IQR)14

Descriptive statistics

Standard deviation40.92158
Coefficient of variation (CV)1.9715255
Kurtosis18.268318
Mean20.756303
Median Absolute Deviation (MAD)6
Skewness4.0398202
Sum2470
Variance1674.5757
MonotonicityNot monotonic
2025-09-15T13:58:40.946921image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=29)
ValueCountFrequency (%)
2 17
14.3%
4 16
13.4%
6 16
13.4%
10 10
 
8.4%
0 9
 
7.6%
8 8
 
6.7%
12 7
 
5.9%
18 5
 
4.2%
30 3
 
2.5%
16 3
 
2.5%
Other values (19) 25
21.0%
ValueCountFrequency (%)
0 9
7.6%
2 17
14.3%
4 16
13.4%
6 16
13.4%
8 8
6.7%
10 10
8.4%
12 7
5.9%
14 2
 
1.7%
16 3
 
2.5%
18 5
 
4.2%
ValueCountFrequency (%)
260 1
0.8%
228 1
0.8%
214 1
0.8%
100 2
1.7%
96 1
0.8%
94 2
1.7%
80 1
0.8%
74 1
0.8%
58 1
0.8%
46 1
0.8%
Distinct90
Distinct (%)75.6%
Missing0
Missing (%)0.0%
Memory size31.6 KiB
2025-09-15T13:58:41.287755image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length784
Median length217
Mean length192.46218
Min length44

Characters and Unicode

Total characters22903
Distinct characters73
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique63 ?
Unique (%)52.9%

Sample

1st rowHere are some of the most important data visualizations that every Financial Data Analyst/Scientist should know.
2nd rowHere are some of the best data science project ideas on healthcare. If you want to become a data science professional in the healthcare domain then you must try to work on these projects.
3rd rowLearn how to train a machine learning model and giving inputs to your trained model to make predictions using Python.
4th rowHere’s how you can write a Python program to detect whether a sentence is a question or not. The idea here is to find the words that we see in the beginning of a question in the beginning of a sentence.
5th rowPlotting annotations while visualizing your data is considered good practice to make the graphs self-explanatory. Here is an example of how you can annotate a graph using Python.
ValueCountFrequency (%)
the 192
 
4.9%
of 163
 
4.1%
to 141
 
3.6%
data 125
 
3.2%
you 120
 
3.0%
a 96
 
2.4%
here 86
 
2.2%
are 85
 
2.2%
in 76
 
1.9%
and 64
 
1.6%
Other values (549) 2795
70.9%
2025-09-15T13:58:41.840022image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
3822
16.7%
e 2350
 
10.3%
t 1625
 
7.1%
a 1607
 
7.0%
o 1503
 
6.6%
n 1394
 
6.1%
i 1277
 
5.6%
s 1234
 
5.4%
r 1149
 
5.0%
l 740
 
3.2%
Other values (63) 6202
27.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 22903
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
3822
16.7%
e 2350
 
10.3%
t 1625
 
7.1%
a 1607
 
7.0%
o 1503
 
6.6%
n 1394
 
6.1%
i 1277
 
5.6%
s 1234
 
5.4%
r 1149
 
5.0%
l 740
 
3.2%
Other values (63) 6202
27.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 22903
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
3822
16.7%
e 2350
 
10.3%
t 1625
 
7.1%
a 1607
 
7.0%
o 1503
 
6.6%
n 1394
 
6.1%
i 1277
 
5.6%
s 1234
 
5.4%
r 1149
 
5.0%
l 740
 
3.2%
Other values (63) 6202
27.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 22903
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
3822
16.7%
e 2350
 
10.3%
t 1625
 
7.1%
a 1607
 
7.0%
o 1503
 
6.6%
n 1394
 
6.1%
i 1277
 
5.6%
s 1234
 
5.4%
r 1149
 
5.0%
l 740
 
3.2%
Other values (63) 6202
27.1%
Distinct54
Distinct (%)45.4%
Missing0
Missing (%)0.0%
Memory size71.4 KiB
2025-09-15T13:58:42.114401image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length406
Median length328
Mean length264.80672
Min length153

Characters and Unicode

Total characters31512
Distinct characters32
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique30 ?
Unique (%)25.2%

Sample

1st row#finance #money #business #investing #investment #trading #stockmarket #data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #dataanalyst #amankharwal #thecleverprogrammer
2nd row#healthcare #health #covid #data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #dataanalyst #amankharwal #thecleverprogrammer
3rd row#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer #machinelearningmodels
4th row#python #pythonprogramming #pythonprojects #pythoncode #pythonlearning #pythondeveloper #pythoncoding #pythonprogrammer #amankharwal #thecleverprogrammer #pythonprojects
5th row#datavisualization #datascience #data #dataanalytics #machinelearning #dataanalysis #artificialintelligence #python #datascientist #bigdata #deeplearning #dataviz #ai #analytics #technology #dataanalyst #programming #pythonprogramming #statistics #coding #businessintelligence #datamining #tech #business #computerscience #tableau #database #thecleverprogrammer #amankharwal
ValueCountFrequency (%)
amankharwal 117
 
5.2%
thecleverprogrammer 117
 
5.2%
python 109
 
4.8%
machinelearning 97
 
4.3%
pythonprogramming 95
 
4.2%
datascience 94
 
4.2%
ai 91
 
4.0%
pythonprojects 90
 
4.0%
artificialintelligence 89
 
3.9%
data 88
 
3.9%
Other values (154) 1270
56.3%
2025-09-15T13:58:42.562082image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 3348
 
10.6%
e 2732
 
8.7%
n 2429
 
7.7%
# 2256
 
7.2%
t 2216
 
7.0%
i 2144
 
6.8%
  2138
 
6.8%
r 1774
 
5.6%
c 1564
 
5.0%
o 1416
 
4.5%
Other values (22) 9495
30.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 31512
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 3348
 
10.6%
e 2732
 
8.7%
n 2429
 
7.7%
# 2256
 
7.2%
t 2216
 
7.0%
i 2144
 
6.8%
  2138
 
6.8%
r 1774
 
5.6%
c 1564
 
5.0%
o 1416
 
4.5%
Other values (22) 9495
30.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 31512
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 3348
 
10.6%
e 2732
 
8.7%
n 2429
 
7.7%
# 2256
 
7.2%
t 2216
 
7.0%
i 2144
 
6.8%
  2138
 
6.8%
r 1774
 
5.6%
c 1564
 
5.0%
o 1416
 
4.5%
Other values (22) 9495
30.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 31512
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 3348
 
10.6%
e 2732
 
8.7%
n 2429
 
7.7%
# 2256
 
7.2%
t 2216
 
7.0%
i 2144
 
6.8%
  2138
 
6.8%
r 1774
 
5.6%
c 1564
 
5.0%
o 1416
 
4.5%
Other values (22) 9495
30.1%

Interactions

2025-09-15T13:58:35.437309image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:21.264364image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.208399image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.662665image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.039253image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.234670image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.383165image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.804841image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.084804image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.389414image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.543575image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.598481image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:21.422225image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.371293image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.771397image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.146239image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.333952image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.476962image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.923122image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.200752image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.494274image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.662200image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.747483image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:21.569997image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.520118image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.876198image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.254178image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.431733image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.577687image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.032552image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.339602image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.604748image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.780576image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.891621image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:21.744850image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.660494image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.989904image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.371379image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.536112image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.693708image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.144220image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.451138image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.714405image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.899477image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.041082image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:21.914562image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.825006image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.097283image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.481205image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.641241image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.814977image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.277264image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.575420image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.827761image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:34.008235image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.200297image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:22.068126image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.974286image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.198960image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.585468image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.741459image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.923270image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.396319image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.699637image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.933833image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:34.124574image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.334625image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:22.211414image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.132834image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.300826image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.688895image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.841998image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.019027image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.513169image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.816363image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.029339image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:34.686719image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.482970image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:22.590947image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.259210image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.408984image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.806330image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.953747image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.119243image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.634022image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:31.945605image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.132246image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:34.858550image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.649935image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:22.760116image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.364542image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.513149image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:26.913799image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.085006image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.245511image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.747318image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.053231image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.238711image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.020082image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.786174image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:22.925136image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.464936image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.611317image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.017095image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.188205image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.341753image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.856579image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.161064image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.339574image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.157669image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:36.948979image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:23.072630image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:24.563001image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:25.715292image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:27.136275image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:28.285276image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:29.704888image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:30.976226image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:32.268828image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:33.445050image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-09-15T13:58:35.295070image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Correlations

2025-09-15T13:58:42.678559image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
CommentsFollowsFrom ExploreFrom HashtagsFrom HomeFrom OtherImpressionsLikesProfile VisitsSavesShares
Comments1.000-0.0790.0150.1550.331-0.1340.2250.3060.0290.1830.134
Follows-0.0791.0000.4820.5620.3500.6170.7620.5680.7580.4350.228
From Explore0.0150.4821.0000.2360.4570.2590.6090.5310.3250.6470.422
From Hashtags0.1550.5620.2361.0000.1180.3770.7830.6250.5840.3950.251
From Home0.3310.3500.4570.1181.0000.1770.5410.7050.2450.7050.576
From Other-0.1340.6170.2590.3770.1771.0000.4730.3840.6050.3000.283
Impressions0.2250.7620.6090.7830.5410.4731.0000.8540.6540.6880.465
Likes0.3060.5680.5310.6250.7050.3840.8541.0000.4850.8500.569
Profile Visits0.0290.7580.3250.5840.2450.6050.6540.4851.0000.2580.113
Saves0.1830.4350.6470.3950.7050.3000.6880.8500.2581.0000.618
Shares0.1340.2280.4220.2510.5760.2830.4650.5690.1130.6181.000

Missing values

2025-09-15T13:58:37.136485image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
A simple visualization of nullity by column.
2025-09-15T13:58:37.279340image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.

Sample

ImpressionsFrom HomeFrom HashtagsFrom ExploreFrom OtherSavesCommentsSharesLikesProfile VisitsFollowsCaptionHashtags
0392025861028619569895162352Here are some of the most important data visualizations that every Financial Data Analyst/Scientist should know.#finance #money #business #investing #investment #trading #stockmarket #data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #dataanalyst #amankharwal #thecleverprogrammer
15394272718381174781947142244810Here are some of the best data science project ideas on healthcare. If you want to become a data science professional in the healthcare domain then you must try to work on these projects.#healthcare #health #covid #data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #dataanalyst #amankharwal #thecleverprogrammer
24021208511880533411111316212Learn how to train a machine learning model and giving inputs to your trained model to make predictions using Python.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer #machinelearningmodels
34528270062193273172107213238Here’s how you can write a Python program to detect whether a sentence is a question or not. The idea here is to find the words that we see in the beginning of a question in the beginning of a sentence.#python #pythonprogramming #pythonprojects #pythoncode #pythonlearning #pythondeveloper #pythoncoding #pythonprogrammer #amankharwal #thecleverprogrammer #pythonprojects
42518170425527937965412380Plotting annotations while visualizing your data is considered good practice to make the graphs self-explanatory. Here is an example of how you can annotate a graph using Python.#datavisualization #datascience #data #dataanalytics #machinelearning #dataanalysis #artificialintelligence #python #datascientist #bigdata #deeplearning #dataviz #ai #analytics #technology #dataanalyst #programming #pythonprogramming #statistics #coding #businessintelligence #datamining #tech #business #computerscience #tableau #database #thecleverprogrammer #amankharwal
5388420461214329437471014492Here are some of the most important soft skills that every data scientist should have.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #algorithm #algorithms #machinelearningalgorithms #ml #amankharwal #thecleverprogrammer #softskills
62621154359933325225176260Learn how to analyze a candlestick chart as a data scientist or a financial analyst. I hope this resource will help you to invest and analyze stock markets.#stockmarket #investing #stocks #trading #money #investment #finance #forex #datavisualization #datascience #data #dataanalytics #machinelearning #dataanalysis #ai #candlestick #candlestickcharts
7354120716285006013549124126Here are some of the best books that you can follow to learn Python from scratch.#python #pythonprogramming #pythonprojects #pythoncode #pythonlearning #pythondeveloper #pythoncoding #pythonprogrammer #amankharwal #thecleverprogrammer #pythonprojects #pythonbooks #bookstagram
8374923848572484915568159364Here are some of the best data analysis project ideas that you should try and show on your resume. These projects will help you to show your data analysis skills.#dataanalytics #datascience #data #machinelearning #datavisualization #bigdata #artificialintelligence #datascientist #python #analytics #ai #dataanalysis #deeplearning #technology #programming #coding #dataanalyst #business #pythonprogramming #datamining #tech #businessintelligence #database #computerscience #statistics #powerbi #dataanalysisprojects #businessanalytics #thecleverprogrammer #amankharwal
94115260911041784612263191316Here are two best ways to count the number of letters in a string using Python.#python #pythonprogramming #pythonprojects #pythoncode #pythonlearning #pythondeveloper #pythoncoding #pythonprogrammer #amankharwal #thecleverprogrammer #pythonprojects
ImpressionsFrom HomeFrom HashtagsFrom ExploreFrom OtherSavesCommentsSharesLikesProfile VisitsFollowsCaptionHashtags
1091771324492141123895615043233087096Here are some of the best resources to learn SQL for data science.#sql #mysql #datascience #datasciencejobs #datasciencetraining #datascienceeducation #datasciencecourse #data #dataanalysis #dataanalytics #datascientist #machinelearning #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer
11055633813362113576149581632220Here are the best Python libraries for data visualization that you should learn for data science.#datavisualization #datascience #datasciencejobs #datasciencetraining #datascienceeducation #datasciencecourse #data #dataanalysis #dataanalytics #datascientist #machinelearning #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer
1114842165869420363105564864630Learn how to create an interactive language translator using the Python programming language.#python #pythonprogramming #pythoncode #pythonlearning #pythondeveloper #pythonprogrammer #pythonprojects #python3 #pythoncoding #pythonprogramminglanguage #amankharwal #thecleverprogrammer #nlp #naturallanguageprocessing
1121114944397475762532734132106158Python is one of the best programming languages for numerical calculations. So you should know how to calculate mean, median and mode using Python without using any built-in Python library or module. Here’s how to calculate mean, median, and mode using Python.#python #pythonprogramming #pythoncode #pythonlearning #pythondeveloper #pythonprogrammer #pythonprojects #python3 #pythoncoding #pythonprogramminglanguage #amankharwal #thecleverprogrammer
113102062371162460001171821017172237100Practice these 90+ Data Science Projects For Beginners Solved & Explained using Python. Find all these projects from the link in bio.#datascience #datasciencejobs #datasciencetraining #datascienceeducation #datasciencecourse #data #dataanalysis #dataanalytics #datascientist #machinelearning #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer
11413700518530415352775732383737380Here are some of the best data science certifications that you can choose from in 2022.#datascience #datasciencejobs #datasciencetraining #datascienceeducation #datasciencecourse #data #dataanalysis #dataanalytics #datascientist #machinelearning #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer
115573119231368226665135411482018Clustering is a machine learning technique used to classify data points, charaterized by some specific features into groups. It is an unsupervised machine learning method where the data we deal with is not labelled. Here are some of the best Machine Learning project ideas on Clustering that you should try.#machinelearning #machinelearningalgorithms #datascience #dataanalysis #dataanalytics #datascientist #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #algorithm #algorithms #amankharwal #thecleverprogrammer #clustering
1164139113315381367333601923410Clustering music genres is a task of grouping music based on the similarities in their audio characteristics. Here you will learn how to do clustering analysis of music genres with Machine Learning using Python.#machinelearning #machinelearningalgorithms #datascience #dataanalysis #dataanalytics #datascientist #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #algorithm #algorithms #amankharwal #thecleverprogrammer #clustering
11732695118153147174141701095275549148214Here are some of the best data science certifications that you can choose from in 2022.#datascience #datasciencejobs #datasciencetraining #datascienceeducation #datasciencecourse #data #dataanalysis #dataanalytics #datascientist #machinelearning #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer
11836919134734176164442547653526443611228175 Python Projects with Source Code solved and explained for free: Link in Bio#python #pythonprogramming #pythonprojects #pythoncode #pythonlearning #pythondeveloper #pythoncoding #pythonprogrammer #amankharwal #thecleverprogrammer #pythonprojects

Duplicate rows

Most frequently occurring

ImpressionsFrom HomeFrom HashtagsFrom ExploreFrom OtherSavesCommentsSharesLikesProfile VisitsFollowsCaptionHashtags# duplicates
024071338655276394082072100Data Science Use Cases: Here’s how Zomato is using your data for its future business model.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer #machinelearningmodels #zomato #business #casestudy #businessmodel2
12766254111651940104114116Here are all the programming languages that Facebook uses in the Front-end and the back-end of Facebook.#programming #coding #programmer #python #developer #javascript #technology #code #coder #java #html #computerscience #tech #css #webdeveloper #software #webdevelopment #codinglife #softwaredeveloper #linux #programmingmemes #webdesign #programmers #php #programminglife #machinelearning #hacking #pythonprogramming #thecleverprogrammer #amankharwal2
22826210858376346733114304Visualizing data is one of the most valuable skills every Data Scientist and Analyst should have. There are a lot of data visualizations to learn in data science. Here you will find a list of all data visualizations for data science explained using Python.#dataanalytics #datascience #data #machinelearning #datavisualization #bigdata #artificialintelligence #datascientist #python #analytics #ai #dataanalysis #deeplearning #technology #programming #coding #dataanalyst #business #pythonprogramming #datamining #tech #businessintelligence #database #computerscience #statistics #powerbi #dataanalysisprojects #businessanalytics #thecleverprogrammer #amankharwal2
3299819457948413942411263110Time series analysis means analyzing and finding patterns in a time series dataset. A time-series dataset is a sequence of data collected over an interval of time. Here you will learn how to do Time Series Analysis using Python.#timeseries #time #statistics #datascience #bigdata #machinelearning #python #ai #timeseriesanalysis #datavisualization #dataanalytics #data #iot #analysis #timeseriesmalaysia #artificialintelligence #analytics #amankharwal #thecleverprogrammer2
43015203477111541521149292Here’s how Amazon uses your data as an e-commerce platform. I hope this post will help you to understand how Amazon is using data science to improve the quality of its services.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer #machinelearningmodels #zomato #business #casestudy #businessmodel #amazonfinds2
5305226082011218763514129142Here are all the programming languages that Google uses in the Front-end and the back-end of Google.#programming #coding #programmer #python #developer #javascript #technology #code #coder #java #html #computerscience #tech #css #webdeveloper #software #webdevelopment #codinglife #softwaredeveloper #linux #programmingmemes #webdesign #programmers #php #programminglife #machinelearning #hacking #pythonprogramming #thecleverprogrammer #amankharwal2
6316919797073413210681121212In Data Science, Time Series Analysis is a method of analyzing data collected over an interval of time. Stock price data and covid-19 cases data are examples of time-series data. Time Series Analysis helps understand the underlying causes of trends and patterns at particular time intervals. So it is one of the topics that every data scientist should know perfectly. So if you are looking for some of the best data science project ideas on Time Series Analysis, you should try to work on these projects.#timeseries #time #statistics #datascience #bigdata #machinelearning #python #ai #timeseriesanalysis #datavisualization #dataanalytics #data #iot #analysis #timeseriesmalaysia #artificialintelligence #analytics #amankharwal #thecleverprogrammer2
73630174716937286137410137144Here are some of the best data analysis project ideas for resume that you should try.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #machinelearningprojects #datascienceprojects #amankharwal #thecleverprogrammer2
839242244127832634139113151192Here are some of the most popular data science case studies and projects that every data science beginner should try. You can find these case studies and projects with solutions at Kaggle.#data #datascience #dataanalysis #dataanalytics #datascientist #machinelearning #python #pythonprogramming #pythonprojects #pythoncode #artificialintelligence #ai #deeplearning #algorithm #algorithms #machinelearningalgorithms #ml #amankharwal #thecleverprogrammer #projects #casestudies2
940023401278128731111718205162Here are some of the highest paying skills in 2022 that you should start learning today. These skills do not require you to come from a specific education background. If you are passionate about learning any of these skills, then you can easily find so many free resources on the internet. If you don’t know how to find free resources to learn these skills, feel free to reach me @aman.kharwal, I will be happy to guide you.#career #job #jobs #jobsearch #education #business #success #careergoals #motivation #work #careerdevelopment #careers #goals #resume #students #careeradvice #datascience #marketing #digitalmarketing #media #socialmedia #IT #webdevelopment #amankharwal #thecleverprogrammer2